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Abstract: Since the 1970s, computerized machine tools have been replacing semi-skilled 
manufacturing workers, contributing to factory automation. We build a novel measure of exposure 
to computer numerical control (CNC) based on initial variation in tool types across industries and 
differential shifts toward CNC technology by tool type over time. Industries more exposed to CNC 
increased capital investment and experienced higher labor productivity. Total employment rose, 
with gains for college-educated workers and abstract tasks compensating for losses of less-
educated workers and routine tasks. Employment gains were strongest for unionized jobs. Workers 
in exposed industries returned to school and relevant degree programs expanded.  
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I. Introduction 

For the past century, manufacturing has been characterized by a continuous (but punctuated) 

process of automation, whereby new technology enables tasks previously completed by human 

labor to be accomplished, in whole or in part, with machines. Many technologies have contributed 

to this transformation – including “computer numerical control machinery, industrial robots, and 

artificial intelligence” (Acemoglu and Restrepo 2019, p. 3).  

In this paper, we document the effect of computer numerical control (CNC) machinery – a primary 

and relatively unexamined source of automation – on productivity and employment in the 

manufacturing sector, and on the adjustment of workers and firms to the technological shock. 

Beginning in the 1970s, CNC  machine tools began to diffuse widely.  CNC tools rely on computer 

programs and servomechanisms rather than human operatives to select and perform the tool’s 

physical movements. Like other forms of automation, CNC has the potential to enhance labor 

productivity, but also to displace low- or mid-skill workers who perform routine tasks. 

Furthermore, the diffusion of CNC resulted in the creation of new tasks, including the need for 

high-skilled technicians who could install, program, and fix these complex machines, as well as 

white-collar workers who could fulfill the customized orders increasingly made possible by this 

more flexible form of metalworking technology.  

Economists have studied the effects of industrial robotics intensively in recent years (see, e.g., 

Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020; Adachi, Kawaguchi and Saito, 2020; 

Dauth, et al., 2021). There are two main reasons why the spread of CNC technology in the US in 

the 1970s and 1980s may have had different effects on the labor market than the effects of 

industrial robots today.  

First, CNC and robots automate different parts of the production process. CNC displaces semi-

skilled operatives in the production of parts by cutting and bending metal, whereas robots automate 

the lower-skilled assembly of these parts into a final product.1 Automation of high-wage positions 

 
1 CNC “often replaced skilled craftspeople” (Doms, Dunne and Troeske 1997, p 260) including 
“the skilled jobs of setter and set-up operator [and] the semi-skilled job of machine operator” 
(Keefe 1991, p. 516). By contrast, robots are primarily used “to perform several manual tasks” in 
the second stage of the process, “such as welding, painting, assembly, handling materials and 
packaging” (Acemoglu and Restrepo 2020, p. 2189). 
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can induce stronger productivity effects and thus more positive employment effects than the 

automation of low-wage positions. Perhaps for this reason, time series evidence suggests that 

automation at mid-century (1947-1987), in which CNC technology played a central role, may have 

been “accompanied by the introduction of new tasks… that counterbalanced the adverse labor 

demand consequences of automation,” a phenomenon that is not taking place today (Acemoglu 

and Restrepo 2019, p. 16).  

Second, the labor market institutions were very different when CNC was first adopted by 

manufacturing firms. In the early 1970s, 45% of workers in the metal industry were covered by a 

union, compared to around 10% in 2010. Unionized firms may adopt new technology more slowly 

than their non-union counterparts or may adjust their workforce more gradually as new technology 

arrives, leading displacement effects to be muted.  

We find that the diffusion of CNC technology led to rising productivity in manufacturing. In 

particular, the advent of CNC was associated with growing capital investments, rising labor 

productivity, and a falling labor share in manufacturing. Industries that were more exposed to CNC 

experienced an increase in total employment, with the growing number of college-educated 

workers outpacing the decline in high school graduates and high school dropouts. The diffusion of 

CNC was also associated with growth in occupations associated with abstract or manual tasks and 

a decline in occupations engaged in routine tasks.  

Some of the positive effect of CNC technology on total employment can be attributed to union 

activity. Indeed, the non-union workforce in exposed manufacturing industries declined, with the 

largest losses experienced by high school dropouts and additional losses among high school 

graduate and workers with some college education. By contrast, the union workforce in these 

industries expanded, fueled by larger gains among college graduates and smaller losses among 

less-educated workers. 

Workers responded to this new technology by returning to school, which may have insulated them 

to some extent from the shock. Workers who were either current employees or recently employed 

in exposed industries were more likely to go back to school to earn a two-year or four-year degree. 

We also provide new evidence that colleges and universities expanded their degree offerings 

related to CNC technology to accommodate the growing interest. However, we do not find that 
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this shock encouraged firms to move to the South, where worker protections were weaker, or that 

it affected the size distribution of manufacturing establishments. 

Our analysis is based on a novel measure of exposure to CNC technology at the industry-year 

level. We exploit baseline variation in the use of certain tool types in production across industries 

as of 1958, before the spread of CNC. Machine tools – including lathes, mechanical presses, 

grinding machines and so on – shifted from manual to automatic control in different years and to 

different extents. Our measure is one of the first to use detailed aspects of the production process 

to understand why certain industries adopt automation technology earlier than others.  

The American Machinist Inventory of Metalworking Equipment provides detailed information on 

machine tool use by industry in 1958, before the invention of CNC. Annual trade statistics on the 

count and value of exports of CNC and non-CNC tools from the three major world exporters – 

Germany, Japan and Italy – are available until 2009 and allow us to identify differential timing in 

the diffusion of CNC by tool. Our completed diffusion measure spans 1968 to 2009.  

We focus on seven metal manufacturing industries that account for the majority of CNC adoption.2 

By our measure, all sample industries had very low exposure to CNC in the early 1970s, accounting 

for less than five percent of their tool base. By 1990, industries like aircraft increased exposure to 

CNC tools dramatically (up to 40% of its tool base by value), while other industries like motor 

vehicles were less affected (25% of its tool base).  

Ideally, we would have annual data on the adoption of CNC technology across industries in the 

US to estimate the effect of CNC diffusion on economic activity. We would then use our exposure 

measure, which is driven primarily by varying engineering challenges across tools as well as 

differences in industrial policy in major world exporters,, as an instrument for adoption. Because 

data on industry-level CNC tool use does not exist, we use our exposure measure in an “intent to 

treat” framework, rather than as an instrument.  

We provide three pieces of evidence that the falling demand for low- and mid-skilled workers 

associated with rising exposure to CNC technology was not driven by other potentially correlated 

factors. First, we do not find a pre-trend in workforce composition in industries that were more or 

 
2 Similarly, four industries account for around 70% of robot adoption (Acemoglu and Restrepo, 
2020). 
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less exposed to the later CNC shock before the shock takes place (pre-period = 1968-75). Second, 

we consider – and reject – the possibility that industries with rising exposure to CNC also faced 

growing import competition for final products due to growing international trade. The timing of 

CNC diffusion pre-dated major changes in import competition by at least 10 to 15 years. Third, 

our exposure measure is based on shifts to CNC technology among global exporters, not on shifts 

within the US machine tool industry. We present evidence that toolmakers in Japan and Germany 

were not reacting to demand from the United States but instead were shaped by their own domestic 

manufacturing sectors.  

Our paper is most closely related to classic work on the effect of factory electrification on demand 

for skill in US manufacturing (Goldin and Katz, 1998; Katz and Margo, 2014). We extend this 

timeline forward beyond factory electrification in the 1910s and 1920s – and the heyday of mass 

production employment in the 1940s and 1950s – to the automation of the machining process for 

fabricating metal parts in the 1970s and 1980s. We introduce well-identified variation in the 

adoption of automated machine tools across industry based on pre-existing differences in tool use. 

In doing so, our paper joins new work documenting the effect of new specialized (but worker-

operated) machine tools in the late 19th century (Atack, Margo and Rhode, 2019) and factory 

electrification from 1910-40 (Gray, 2013; Fiszbein, et al. 2020).3 Like these earlier episodes, we 

find that the diffusion of automated machine tools increased labor productivity and employment. 

One important contrast is that many of the new jobs resulting from CNC technology were higher-

skilled (college graduates), whereas electrification led to de-skilling.  

Our findings also contain insights for our understanding of the effects of industrial robots on the 

contemporary labor market. Adoption of industrial robots has been associated with falling 

employment at the industry level in the US, but with null or positive effects on employment in 

Germany and Japan (Acemoglu and Restrepo, 2020; Graetz and Michaels, 2018; Dauth, et al., 

2021; Adachi, Kawaguchi and Saito, 2020). Dauth, et al. (2021) suggests that differences in 

 
3  Gaggl, et al. (2021) and Lewis and Severnini (2020) study the effect of electrification on 
structural transformation from agriculture to manufacturing and on the agricultural sector in rural 
areas, respectively. Feigenbaum and Gross (2020) consider a specific episode of historical 
automation: the replacement of manual telephone switchboards with automatic exchanges. They 
find that young women workers were displaced from the telephone industry, but employment more 
than rebounded in other sectors (e.g., typists and secretaries) and so overall employment did not 
fall.  
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unionization rates may play a role in explaining differential effects of robot technology across 

countries, while Acemoglu and Restrepo (2019) point to higher manufacturing wages in Germany 

and Japan versus lower wages in the United States. Consistent with these theories, we find that 

CNC technology, which diffused in the US during a period of high unionization and displaced a 

relatively high-paid task, is associated with rising employment. Moreover, the positive effect of 

CNC on total employment was stronger in the union sector than in the non-union sector, suggesting 

that labor market institutions can mediate the effect of technological change.4  

Both automated machine tools and industrial robots are specific examples of the transformative 

role of computers in the factory. As such, our paper joins a large literature on the effect of 

computerization and skill-biased technical change on the workforce (a few touchstone papers 

include Autor, Katz and Krueger, 1998 and Autor, Levy, Murnane, 2003). Much of this literature 

combines white collar computer use with computerization in the factory, or explicitly focuses on 

workers who perceive themselves as using a computer on the job (which may exclude some 

manufacturing uses where the role of computers is less transparent). We focus on a narrower but 

more well-defined use of computing technology and trace out the specific effects on productivity 

and the workforce. 

Finally, our study builds on three earlier quantitative studies of CNC adoption. Unlike our 

industry-level study, these papers compare establishments or plants that adopt CNC to competitors 

who do not. Doms, Dunne and Troske (1997) show that plants adding new computer-assisted 

production practices do not hire more college graduates. Keefe (1991) documents that machine 

shops adopting CNC replace skilled occupations like machinists with unskilled occupations like 

machine tenders. Bartel, Ichniowski and Shaw (2007) survey human resource managers and find 

that skill requirements for newly-hired machine operators are higher at firms with CNC, suggesting 

that there can be some skill upgrading within occupation categories. None of these papers use 

event-study research designs, and so it is hard to separate the effect of CNC technology from other 

differences between firms that choose to adopt new technology and those that do not (e.g., these 

 
4 Related papers compare firms that invest in robot technology (or, more broadly, in “industrial 
equipment”) to competitors who do not. Firms that adopt robots experience rising productivity, 
output and total employment (Humlum, 2019; Acemoglu, et al. 2020; Koch, et al. 2021; Aghion, 
et al. 2021). Bessen, et al. (2019, 2020) instead find evidence of displacement, even at the firm 
level, following automation events in the Netherlands. 
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firms could be bigger, better managed, more engaged in export, located in different areas, and so 

on). Furthermore, these studies do not consider the effect of automation on total employment, 

capital investment or labor productivity. 

 

II. Historical Context  

The punctuated history of automation in the manufacturing sector 

This section situates the development of computer numerical control machine tools in the longer-

run history of factory automation. Automation – or the process by which new technologies “enable 

capital to substitute for labor in a range of tasks” (Acemoglu and Restrepo 2019, p. 3) – has evolved 

in four main stages.  

The first step, which was a necessary precursor to all later automation episodes, was the 

development of interchangeable parts in the 19th century (Hounshell 1984). With 

interchangeability, the production of metal goods could be subdivided into two distinct activities: 

the production of parts from raw metal stock and the assembly of those parts into finished goods 

in bulk. Interchangeability eliminated the need for skilled “fitters,” who adjusted parts to fit 

together as they were assembled by hand. 

The achievement of true interchangeability depended on the advent of modern machine tools that 

could cut or bend raw metal in ways that were both precise and replicable. Machine tools such as 

lathes and drills have been in use since the 18th century but underwent rapid improvement and 

diffusion after 1860 (Holt 1966, Woodbury 1972; Atack, Margo and Rhode, 2019). These machine 

tools were operated by skilled machinists who translated engineering drawings into precise 

operations by manipulating the wheels and levers of the machine by hand.  

The second step in the history of automation, particularly in metal manufacturing, was the 

invention of the assembly line, pioneered by the Ford Motor Company in 1908 (Hounshell 1984). 

Factory electrification, which diffused rapidly between 1910 and 1930, was important to the 

development of the assembly line because it allowed for the flexible placement of each machine 

in the order required to maximize efficiency (Devine 1983). Previously, machines were powered 

by a central drive, which limited flexibility and required porters to move parts around the factory. 
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Electrification thus substituted for human labor and was complementary with more high-skilled 

tasks needed to install and fix machines (Goldin and Katz, 1998). 

Automated machine tools, the subject of this paper, were the third step in this automation process. 

Before this step, semi-skilled operators were required to control the motions of machine tools. 

Numerical control – as first developed in the late 1950s and then computerized in the mid-1970s 

– codifies the movements of skilled operators into a program so that a less-skilled operative can 

execute them automatically. Numerical control required the invention of both computer systems 

that could execute the programs and servomechanisms that translated the programs into precise 

physical movements of the tools. Both of these technologies advanced substantially during World 

War II, the computer primarily for ballistics computations and servomechanisms for the automatic 

targeting of guns to ships or airplanes detected on radar (Mindell 2004). We describe the invention 

and diffusion process for CNC tools in the next section. 

The fourth step in the automation of metal manufacturing has been the use of industrial robots in 

the assembly of metal products from components parts. Unlike CNC tools, which replaces the fine 

motor skills of skilled machinists, robots automate the gross motor skills involved with assembly, 

as well as with “welding, painting… handling materials and packaging” (Acemoglu and Restrepo 

2020, p. 2189). Robots began to diffuse widely in the 1990s and have received significant attention 

from economists.   

 

The invention and diffusion of CNC machine tools 

The first numerically controlled machine tool was invented in the United States in the early 1950s 

at the MIT Servomechanisms Lab, building on the advances in computing and servomechanisms 

that emerged during World War II. These early tools, developed under contract with the US Air 

Force, were used for the machining of helicopter rotor components, which required a level of 

precision that even skilled machine tool operators of the day could not readily attain (Noble 1986).  

The original numerically controlled machine tools built at MIT were too expensive to be 

commercially viable. The goals of the Air Force, along with the preferences of the scientists 

involved, resulted in a machine that was extremely precise and of wide capability but also very 

expensive. While commercialization began in the late 1950s, initial adoption was largely confined 
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to the aircraft industry, where a large share of revenue came from cost-plus contracts with the US 

government. 

The first computer numerical control tools designed for wide commercial applications were 

developed in Japan in the late 1960s. Japanese tool makers became the dominant producers by the 

early 1970s, followed by German competitors. Throughout the 1960s, Japanese tool makers – with 

the support of the Ministry of International Trade and Industry (MITI) – were pursuing lower-cost 

(and thus less precise) designs that were more suited to Japanese metal manufacturing. American 

machines used closed-loop feedback mechanisms, in which the location of the cutting edge of a 

tool was independently measured by sensors. Japanese machines used open-loop systems, which 

eliminated costly sensors and assumed tools had moved without error. This design was not initially 

precise enough to use in aircraft manufacture but was suitable for other industries and much 

cheaper to produce.  

In the mid-1970s, microprocessors replaced dedicated hardware modules, a transition marked by 

the replacement of the term “numerical control” with the alternative “computer numerical control,” 

or CNC. We adopt the term CNC to refer to automated machine tools throughout the paper, even 

though the earliest periods in our data series are before this transition from NC to CNC. 

Microprocessors increased the flexibility of CNC tools, lowered production costs directly, and 

made the addition of more accurate closed-loop controllers cheap. The US machine-tool industry 

lagged behind Japan’s in converting their designs to CNC (Weiandt 1994).  

 

III. Construction of CNC exposure measure and data sources 

Industry-year exposure to CNC technology 

We construct a measure of exposure to CNC technology that varies by year and by industry. Our 

measure relies on two sources of variation: the share of each tool type (e.g., lathes, boring 

machines) in an industry’s tool base as of 1958, before the diffusion of CNC tools; and the value 

share of exports of new machine tools made up of CNC (rather than hand-operated tools) by year 

from the three major machine tool exporters (Japan, Germany, and Italy). Our exposure measure 

to CNC machine tools for industry j is thus the cumulative share of CNC tools in the global market 

as of year t, weighted by baseline tool use in that industry. 
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Our empirical analysis captures the most significant players in the world market. Japan overtook 

the United States to become the largest producer of CNC machine tools in 1975 and served more 

than 60% of the world market by 1981 (Renderio 1985). Germany was the second largest producer 

with around 20% of the market while the United States was left with only 10%. Italy was the fourth 

largest producer. We exclude US machine tool production in the analysis, which may have been 

more responsive to demands from domestic manufacturers. 

To construct our measure, we begin at the tool level, measuring the cumulative CNC share of 

exports for each tool type k and exporter i from 1971 up to year t. The cumulative CNC share for 

exporter i by year t can be written:  

 

    𝑆ℎ𝑎𝑟𝑒_𝐶𝑁𝐶!,#,$ =
∑ &!,#,$

%&'
#()*+)

∑ &!,#,$
,-'./'

#()*+)
            (1) 

 

where 𝑋!,',#()$*+ are the total annual export value of type k machine tools of any mode (hand-operated 

or CNC) from exporter i to the global market in year 𝜏 and 𝑋!,',#,-  are the annual export value of 

CNC tools of type k from exporter i in year 𝜏.  

We then aggregate across exporters to create the tool-level cumulative CNC share. To do so, we 

weight the cumulative CNC share for took k from exporter i (equation 1) by exporter i’s share of 

the total export value of tool type k, which can be written 
&!,$,'
,-'./

∑ &0,$,'
,-'./

0
 . The cumulative CNC share at 

the tool-by-year level (weighted across exporters) can be expressed:  

 

   𝑆ℎ𝑎𝑟𝑒_𝐶𝑁𝐶#,$ = ∑ 𝑆ℎ𝑎𝑟𝑒_𝐶𝑁𝐶!,#,$!
&!,$,'
,-'./

∑ &0,$,'
,-'./

0
           (2) 

 

Finally, we link the cumulative CNC share for tool 𝑘	(equation 2) to industry j by weighing by the 

1958 value share of tool k among the tool inventory for that industry VT$,1,)*23∑ VT$,1,)*231
. Equation 3 thus 

presents our exposure measure to CNC technology at the industry-by-year level: 
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 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_CNC.,$ = ∑ 5 VT$,1,)*23
∑ VT$,1,)*23$

𝑆ℎ𝑎𝑟𝑒𝑁𝐶#,$6#                                 (3)       

 

In the remainder of the section, we explain the data sources for constructing each component of 

this measure and illustrate the resulting patterns of variation.  

1958 value shares of tool k for industry j: We construct the industry-level measures of tool base 

used in equation 3 from the 1958 American Machinist Inventory of Metalworking Equipment 

(AMIME). The AMIME contains information on the value of tool inventories for 28 detailed tool 

types for each metalworking sub-industry.5  

Figure 1 demonstrates that there is substantial variation in the intensity of tool use across industries. 

For example, we find that mechanical presses are relatively heavily used in fabricated metal 

products, boring machines in aircraft, gear cutting machines in farm machinery, and lathes in 

precision mechanisms. The figure is organized as a heatmap of tool-type usage for the seven 

metalworking industries in our analysis, ordered by the amount of variation in use of the tool 

(standard deviation) across the industries. Cells that are shaded orange reflect greater-than-average 

use of the tool type relative to other metal manufacturing sub-industries, and purple shading 

reflects less-than-average use. We report tool use for the 14 tool types included in the export series.  

Annual CNC shares by tool k: We collect the export values for each machine tool type by exporter 

(Japan, Germany, and Italy) from the Economic Handbooks of Machine Tool Industry. The data 

includes 14 major tool types by CNC status for at least one exporter and is available from 1971 to 

2009. We consolidate these 14 tool types to seven categories to reflect differential reporting 

patterns by exporter. Our measure captures the majority of variation in tool use: the 14 tools 

included in the trade data represent 78% of the value share of the 1958 tool base. To complete the 

series, we impute the CNC share to be the lowest CNC share for the given exporter in that year for 

the 14 tool types that are not in the trade data. 

Figure 2 documents that different tool types shifted toward CNC technology at different times and, 

ultimately, at different rates. We plot the time series of CNC machine tools as a value share of all 

 
5 The AMIME contains SIC codes for 16 sub-industries. We aggregate these SIC codes into 7 
categories using the 1950 census industry codes to merge in the other variables and outcomes used 
throughout the project. 
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machine tool exports for the three major exporters (as in equation 1). For Japan (Panel A), lathe 

exports reach 50% CNC by 1976, a level only reached by milling machines around 1980, boring 

and drilling machines around 1984, and grinding machines around 1992. For German exports 

(Panel B), there is a thirty-year lag between the first tool to reach the 50% CNC mark (boring 

machines, 1980) and the last tool to do so (mechanical presses, 2010). Comparable Italian export 

series are reported in Appendix Figure 1. We extend each of these series back to 1968 by assuming 

that each tool had zero CNC share in 1968, 1969 and 1970 before CNC diffusion truly began.  

Figure 3 plots our industry-level CNC exposure measure (equation 3), which combines the 1958 

tool shares by industry from Figure 1 with the annual CNC shifts by tool from Figure 2. CNC tools 

diffused most rapidly for the aircraft and precision mechanism industries and most slowly for 

fabricated metal and motor vehicles. Aircraft reached a diffusion level of 30% of its tool base by 

1986, whereas motor vehicles took another decade to reach this level. The construction of our 

measure makes it clear why this was so: The aircraft industry was particularly reliant on two types 

of machines – boring and milling tools – that were early to shift to CNC technology. By contrast, 

the motor vehicles industry was less likely to use early-adoption tools like lathes and more reliant 

on late-adoption tools like gear cutting. 

 

Innovation in CNC tools was not driven by US demand 

The historical record suggests that both the direction and the speed of innovation by Japanese and 

German tool exporters were driven primarily by their own domestic markets.6 Japan and Germany 

specialized in different machine tools – Japan in lathes and Germany in boring machines, for 

example – as suited their own domestic manufacturing sectors. 

Japan’s small-to-medium sized manufacturing firms created substantial domestic demand for lathe 

production in the 1960s (Itohisa 2010). Japan’s MITI provided incentives to machine tool makers 

in the mid-1960s to develop economies of scale in CNC lathes by producing for the domestic 

market first before promoting exports (Johnson, 1982; Sarathy, 1989). “Exports nevertheless 

 
6 The US comprised approximately 40% of the export market for Japan, 13% for Germany, and 
10% for Italy. Calculations based on statistics reported in the Economic Handbook of the Machine 
Tool Industry, various years, and UN COMTRADE. 
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remained of secondary concern to the Japanese industry until it had exploited the domestic market 

and gained technological leadership in low-cost CNC machine tools” (Collis, 1988). Japan’s early 

expertise in the making of lathes was then persistent as the market shifted to CNC (Collis, 1988).  

Expertise in one machine tool did not translate directly into supremacy in others. Indeed, “to 

develop a lathe required a different design expertise from that needed to develop a grinding 

machine or a drill” (Collis, 1998).  Twenty-five percent of Japan’s lathe exports were CNC in 

1975, rising to 95% CNC by 1985. By contrast, only 50% of Japanese boring, drilling and grinding 

machines were CNC by that year.  

While Japan specialized in lathes, Germany instead specialized in boring machines, and boring 

machines were the first to convert to CNC in Germany. These country-specific patterns are 

confirmed in the US patent records: lathes dominate early patenting by Japanese firms related to 

CNC technology, while boring machines dominate patenting by German firms (see Appendix 

Figure 2).  

Inherent differences in the difficulty of automation between tool types can also explain some of 

the temporal patterns in CNC diffusion. For example, grinding is inherently more difficult to 

automate than milling, drilling, or turning (Collis, 1988). The later and less complete diffusion of 

CNC in the grinding tool category is consistent with this greater technical challenge. 

 

Data sources for outcome variables 

We use two major data sources to measure productivity and employment effects of CNC 

technology at the industry level, and then supplement these sources with data on other outcomes. 

First, we draw on the NBER-CES Manufacturing Industry database to collect measures of capital 

investment, labor productivity and the labor share originally tabulated by the Census of 

Manufactures. We map the SIC industry codes used in the database to our seven metal 

manufacturing categories. Labor productivity is measured as log value added per worker, and the 

labor share is measured as wage bill divided by value added.  

We also consider the log number of production workers in the industry as an outcome. We do not 

use the count of “total” employment, which includes non-production workers, because the 
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employment counts in the Census of Manufactures do not include workers in “auxiliary units (e.g., 

headquarters or support facilities,” many of whom may be white collar, higher skilled workers 

hired as complements to CNC-based production (Bartelsman and Gray 1996).  

Second, we use the CPS Annual Social and Economic Supplement (ASEC) to measure total 

employment and average annual earnings for prime-age men (18-65 years old) by industry and 

education group starting in 1968. We combine education measures into four standard categories: 

less than high school degree, high school graduates, some college, and four or more years of 

college. We also use CPS data on occupations to compute the average abstract, routine, and manual 

task scores of workers in each industry over time by mapping the occupation-level task scores 

from Autor, Levy, and Murnane (2003) to the worker-level occupation variables. 

Third, we use three CPS supplements to measure worker adjustments to the CNC technology 

shock. We collect union status from the CPS May supplement (1973-1983) and then from the CPS 

Outgoing Rotation Groups (1984-2009). We use data on school enrollment from the CPS October 

Educational supplement. In both cases, we then aggregate up the share of workers who report being 

covered by a union or being enrolled in school by industry, year, and education group. 

Fourth, we measure firm responses to the arrival of the CNC technology in two ways. We compute 

the share of workers by industry located in the US South from the CPS ASEC sample. Southern 

states were primarily “right to work” states that were unfriendly to union activity and so we 

hypothesize that industries exposed to CNC technology might opt to relocate to the South. We use 

the County Business Patterns (CBP) data to measure changes in the distribution of establishment 

size by industry over time. The CBP data records the number of establishments by industry and 

employment size bin located in each county. We measure the share of establishments by industry 

in each size bin (that is, we do not use the county dimension of the CBP data). Larger firms may 

be more apt to adopt new technology and thus may have been more likely to survive after the 

diffusion of CNC.      
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IV. Empirical Strategy  

Our empirical analysis examines whether and how the diffusion of CNC technology was associated 

with industry-level productivity and employment, and how workers in the affected industries 

adjusted to the automation of the production process (e.g., by investing in further education).  

We estimate versions of the following equation with different outcome variables:  

 

 𝑦.,$ = 𝛼. + 𝛾$ + 𝛽𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝐶𝑁𝐶.,$ + 𝜀.,$ (4) 

 

where 𝛼. is an industry fixed effect, 𝛾$ is a year fixed effect, and 𝐶𝑁𝐶.,$ is our industry-year level 

measure of CNC exposure based on pre-existing differences in tool use. The coefficient of interest 

𝛽 is thus identified from changes in exposure to CNC tools within an industry over time, after 

controlling for pre-existing gaps across industries (𝛼.)	and common annual trends within the metal 

manufacturing sector (𝛾$) .  

If we had access to data on actual CNC tool use by industry, we would estimate the effect of CNC 

adoption on economic outcomes by instrumenting the potentially endogenous CNC adoption with 

our measure of exposure to CNC diffusion. Because data on actual CNC use is not collected, we 

instead run the ‘intent to treat’ specification in equation 4, estimating the effect of exposure to 

CNC technology on employment and productivity. Note that we cannot interpret the magnitude of 

the coefficient of interest 𝛽 as estimating the effect of changes in tool use directly, but instead as 

the effect of exposure to automated tools. If exposure to CNC technology does not predict adoption 

one-for-one, then the ‘true’ effect of CNC use on economic outcomes – such as one could recover 

from an IV regression – would be smaller than the ‘intent to treat’ estimates that we report in the 

paper. 

We consider a series of outcome variables for 𝑦.,$ including: log of capital expenditures; log of 

value added; labor share of value; log total employment and employment by education category; 

log annual earnings by education category; average task ratings of workers in each industry for 

abstract, routine and manual tasks; and the share of workers enrolled in some higher education by 

industry over time.  
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V. The effect of automated machine tools on economic outcomes 

Capital expenditures 

We start our empirical analysis by considering the relationship between our measure of industry 

exposure to CNC technology and capital expenditures. We expect that the purchase and installation 

of automated machine tools would lead firms to undertake new capital expenditures, so this 

association serves as a validity check of our proxy for CNC adoption.  

Figure 4 illustrates the evolution of log capital expenditure by industry exposure level before, 

during and after the diffusion of CNC technology. For the purposes of this figure, we partition 

industries into low, medium, or high exposure to CNC (low = motor vehicles and fabricated metals; 

medium = electronics, farm equipment, general industrial equipment; high = aircraft, precision 

mechanisms).  

Before the diffusion of CNC, the three capital expenditure series move together. The one exception 

is a short-lived boom in capital investment in the high-exposure industries in the late 1960s, which 

is concentrated in aircraft, very likely because of military demand during the Vietnam War, and 

returns to trend by 1972. As CNC spreads through American manufacturing starting in 1974, 

capital expenditures in high exposure industries rises, and capital investment begins to fan out 

across industries by CNC exposure level. The three series diverge, particularly from the late 1970s 

to the mid-1980s, consistent with the shock having a larger positive effect on capital investment 

in the most exposed industries. 

We investigate capital investment in more detail in Table 1 by using variation across all industries 

(rather than three coarse groupings) and by controlling for production and non-production 

employment, along with industry and year fixed effects. We continue to find a strong positive 

correlation between exposure to CNC and the logarithm of capital expenditures (column 1). A 10-

percentage point increase in CNC exposure, which is the approximate difference between the 

aircraft and motor vehicles industry in 1990, corresponds to a 13% increase in annual capital 

expenditures.  
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Productivity and labor share 

After validating that our exposure measure is associated with capital expenditures, we turn to the 

effect of the CNC technology shock on labor productivity and labor share of revenue. The task 

model of production has clear predictions for each outcome. Labor productivity should rise with 

automation as labor is reallocated away from tasks for which it does not have a strong comparative 

advantage. New technology can also be labor-augmenting in the tasks that remain. Likewise, the 

labor share should fall as firms reallocate tasks from labor to capital (displacement) but will rise if 

a sufficiently large number of new tasks are created (reinstatement) (Acemoglu and Restrepo, 

2018, 2019).  

The logarithm of value-added increases with exposure to CNC, with a 10-percentage point increase 

in exposure to CNC tools corresponding to an 11% increase in value added (Table 1, column 2). 

The specification controls for production employment and non-production employment, so we 

interpret the effect as value added per worker – or labor productivity. Results are similar if we 

instead directly consider the effect on the logarithm of value added per worker. However, the labor 

share – measured as wage bill divided by value added – is falling with industry exposure to CNC 

technology, with a 10-percentage point increase in CNC exposure associated with a 1.7% decline 

in the share of revenue paid out to labor (Table 1, column 3). 

 

Total employment, and employment by education level 

In a task-based model, automation can have positive or negative effects on overall labor demand. 

On the one hand, a smaller share of the tasks will be allocated to labor as some tasks are automated 

and shifted to machines. On the other hand, automation can increase productivity, thereby 

increasing overall employment, and can lead to the creation of new labor-intensive tasks. We 

estimate the effect of CNC technology on total employment in this section and find that total 

employment increases with exposure to CNC. The positive effect of CNC on college-educated 

workers is large enough to offset the negative effect on high school graduates and high school 

dropouts. 

We begin by considering pre-trends in the educational distribution of the manufacturing workforce 

before the diffusion of CNC technology. Figure 5 depicts the share of workers with exactly a high 
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school degree, the largest educational employment sub-category before the spread of CNC, 

representing around 40% of the workforce. As above, we divide industries by low, medium and 

high exposure to CNC. Before the introduction of CNC tools, the share of workers with exactly a 

high school degree was qualitatively similar in all sub-industries (around 40%) and was trending 

up slightly in all industry groups from 1968-1975. After the diffusion of CNC, the share of workers 

with exactly a high school degree continued to rise in sub-industries with low exposure to CNC 

(up to 50%), held steady in sub-industries with medium exposure, and fell in sub-industries with 

high exposure (down to 35%). Appendix Figure 3 includes similar graphs for the other three 

education categories. 

Table 2 reports estimates of the relationship between CNC diffusion and employment, both for 

total employment and employment by education category. We start in column 1 with the reported 

number of production workers from the Census of Manufactures. As exposure to CNC tools 

increases in an industry, the number of production workers declines, with a 10-percentage point 

increase in CNC exposure – roughly the difference between the motor vehicle and aircraft 

industries – associated with an 11% decline in production workers.  

The remainder of the table (columns 2-6) turns to data from the Current Population Survey, which 

allows us to count all workers in an industry and to separate workers by education level. Overall, 

we find that a 10-percentage point increase in CNC exposure is associated with a 13% rise in 

employment. Employment gains are concentrated among college graduates (23% rise). High 

school graduates and high school dropouts by contrast experience a 13% and 18% decline 

respectively. The point estimate for workers with some college education shows a 6% decline but 

the estimate is not statistically significantly different from zero.  

If the falling employment of high school graduates and high school dropouts reflects lower labor 

demand for this educational group by metal manufacturers (as opposed to coincident declines in 

labor supply), we would expect it to be associated with lower wages for these groups in those 

industries as well. Table 3 confirms that this is the case. When CNC diffuses to an industry, the 

annual earnings of high school dropouts employed there fall by a sizeable amount – a 10 percentage 

point increase in CNC exposure is associated with a 9% drop in the earnings of high school 

dropouts – and the earnings of high school graduates decline somewhat (although not significantly 

so). 
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Task composition of the workforce 

Over the past fifty years, labor tasks in the manufacturing sector have become less routine and 

more focused on abstract and critical reasoning. Automation is one possible explanation: as the 

sociologist Daniel Bell put it, from the worker’s perspective, automation “destroy[s] physically 

repetitive and onerous tasks, replacing them with more highly conceptual and socially connected 

activity… [that require more] training, preparation, and learning” (cited in Keefe, 1991 p. 503). 

We find that the diffusion of CNC in an industry is associated with a decline in occupations 

associated with routine tasks and a rise in both abstract- and manual-intensive occupations, much 

like in the broader computerization literature (Autor, Katz and Kearney, 2006). 

For context, Appendix Figure 4 illustrates changes in the average task content of occupations by 

manufacturing sub-industry from 1968-2009. We document that the presence of routine tasks has 

been declining throughout metal manufacturing, and the corresponding density of abstract tasks 

have been rising. There has been little change in the use of manual tasks. On a scale of 0-10, the 

average routine-task content of occupations in metal manufacturing declined by 0.5-1.0, while the 

average abstract-task content increased by a similar degree.7  

Table 4 documents that the diffusion of CNC in an industry is associated with a decline in routine 

tasks and a corresponding increase in abstract and manual work. A 10-percentage point increase 

in CNC exposure is associated with 0.17 increase in average abstract task ratings, which can 

account for roughly 20% of the rise in the abstract content of manufacturing employment over this 

period.  

 

Robustness of main employment effects 

Overall, we find that diffusion of computerized machine tools increased the demand for college-

educated workers and abstract tasks, while lowering the demand for high school graduates or 

dropouts and routine work. Before turning to workers’ responses to this technological shock, we 

 
7 Note that occupations can require both routine and abstract work and that the three task measures 
are not constrained to sum to a fixed number, and so the increase in abstract tasks alongside the 
decline in routine work is not a mechanical effect. 
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first document the robustness of our core employment results to a variety of specifications and 

alternate controls. 

Table 5 presents our core employment results for a variety of specifications. The first row 

reproduces the baseline results from Table 2. Each observation in this unweighted regression is an 

industry-by-year cell, with varying numbers of underlying workers contributing to the cell. Results 

are nearly unchanged when we consider two weighting schemes, either by annual industry 

employment or by initial employment (rows 2 and 3).  

Rows 4 and 5 add groups of industry-year controls. Row 4 includes two demographic measures of 

workers in each industry: the share of workers who are white and the share who are young (18-35 

years old). The same patterns of strong employment gains for college graduates and employment 

losses for high school graduates and high school dropouts hold, with an increase in total 

employment still present but significant at the 10% level.  

Row 5 considers the possibility that industries exposed to the CNC shock were also facing import 

competition for their final products in the same period. We use the measure of annual import 

penetration by industry described in Campbell and Lusher (2016), including this variable as a 

control. 8  Import penetration is defined as the share of imports among domestic demand by 

industry. Adding this control if anything makes the total employment gains larger by increasing 

the estimated effect of CNC on the employment of college-educated workers.  

It is not surprising to see that adding controls for trade conditions does not change the results 

because the import penetration measure is not highly correlated with our industry-level CNC 

shock. In Appendix Figure 5, we plot the import penetration measure by industry over time. First, 

industries with the highest import penetration (motor vehicles and electronics) are not the 

industries with the highest exposure to CNC machine tools. Second, the steepest rise in import 

penetration starts in the 1990s, which is after the main period in which CNC machine tools diffused 

to the industries.  

Row 6 considers an additional control group, a composite of non-metal manufacturing industries 

including food processing, textiles, chemicals and other materials, under the assumption that non-

metal manufacturing did not adopt CNC tools. In this specification, observations for non-metal 

 
8 Data for the measure is drawn from Schott (2008). 
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manufacturing industries will control for annual trends in skill composition within the 

manufacturing sector more broadly. We continue to find that sub-industries experiencing CNC 

diffusion shed high school graduate and high school dropouts from their workforce and increase 

the employment of college graduates. However, when compared to non-metal manufacturing, the 

growth in the employment of college graduates is not large enough to compensate for the loss in 

high school graduates and dropouts, and so the overall effect on employment is zero (but does not 

turn negative).  

 

VI. Worker and firm adjustments to CNC technology 

Less-educated workers and workers on the production floor experienced declining employment 

opportunities in metal manufacturing following the diffusion of computerized machine tools in the 

1970s and 1980s. This group of workers could take two main actions to respond to this 

employment shock. First, workers could join unions, which negotiated for job protections as 

factories were retooled. Second, workers could opt to re-enroll in school, either full- or part-time, 

to earn a degree in one of the new programs like industrial machining or robotics offered at colleges 

and universities. 

 

Unionization  

Since the landmark “Treaty of Detroit” between the United Auto Workers and General Motors in 

1950, industrial unions in the United States have abided by a shared norm not to oppose technical 

change in exchange for a guarantee of employment protections and other benefits from firms (Levy 

2021, p. 472-475; Reuther, 1963; Barnard, 1983; Brown, 1997). For example, when General 

Motors planned to upgrade its Linden, New Jersey plant for the use of computer numerical 

controlled machine tools in 1984, the union negotiated buyouts and job guarantees but did not 

oppose the retooling effort (Milkman 1997).  

Given this institutional arrangement, we would expect unionized employees to be somewhat more 

shielded from the displacement effects of CNC technology than non-unionized workers. Overall, 

the unionization rate declined in manufacturing during this period, from around 45% of the 

workforce in 1973 to around 10% in 2009 (see Appendix Figure 6), but the decline in unionization 

may be slower in sub-industries that were retooling for CNC technology.  



21 
 

We test this hypothesis in Table 6 by splitting each industry-year observation into two cells: one 

containing workers who report being members of or covered by a union and one for non-union 

workers in the same industry-year. We then stack these industry-year-union status cells and re-

estimate the effect of CNC technology on employment, allowing the effect of automation to differ 

for union and non-union workers. In particular, we estimate: 

 

 𝑦.,$,/ = 𝛼./ + 𝛾$/ + 𝛽0𝐶𝑁𝐶.$/ + 𝛽1𝐶𝑁𝐶 ∗ 𝑈𝑛𝑖𝑜𝑛	.$/ + 	𝜀.$/ (5) 

 

where 𝛼./ controls for fixed differences between union- and non-union workers by industry j and 

𝛾$/ allows the effect of union status to evolve over time. These double interactions absorb the main 

effects of industry, year and union status. The double interaction of industry x year is used to 

identify the main effect of exposure to CNC at the industry-year level (𝐶𝑁𝐶.$/), and the triple 

interaction of industry x year x union status is used to identify any differential effect of CNC 

exposure for unionized workers (𝐶𝑁𝐶 ∗ 𝑈𝑛𝑖𝑜𝑛	.$/). 

The results are striking: total employment falls with the introduction of CNC technology among 

non-unionized workers, driven by larger declines in employment for high school graduates and 

dropouts, but also small declines for workers with some college education. By contrast, total 

employment rises for unionized workers. Unionized workers faced some declines in employment 

among high school graduates and dropouts but also enjoyed gains in employment among workers 

with a college degree. 

The patterns we document in Table 6 could arise from worker or firm actions. First, unionized 

firms may have been less responsive to the CNC shock – either less likely to adopt CNC 

technology in the first place or less likely to cut employees after adopting the new technology. 

Alternatively, these patterns could arise if some workers left non-union positions and switched in 

unionized jobs to take advantage of union protections, either by switching firms or by organizing 

at their existing firm . In either case, the data suggest that unions offer some protection from the 

dis-employment effects of automation. 
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Educational attainment and returning to school 

Another possible action that workers in exposed industries may have taken to insulate themselves 

from the CNC shock was to go back to school to improve their skills. We begin investigating this 

possibility by documenting that colleges and universities introduced new degree programs (or 

expanded existing programs) to offer training in the new skills needed in metal manufacturing after 

the diffusion of CNC technology. Then we investigate whether workers currently or recently 

employed in industries exposed to CNC were more likely to report re-enrolling in school. 

Although most college degrees are not directly related to work with computerized machine tools, 

there is a subset (e.g., Machinist/Machine Tool Technologist and Industrial/Manufacturing 

Engineering) long tied to metal manufacturing, as well as new programs like Robotics Technician 

that were started in this period. We compile a time series on degrees related to CNC technology 

from 1967 onward using administrative data on degree completion collected from colleges and 

universities by Higher Education General Information Survey (HEGIS, 1967-84) and IPEDS 

(Integrated Post-Secondary Information Data System (1986-present). In particular, we classified 

all certificate programs and associate and bachelor’s degrees into those we deemed relevant to 

automated machine tools (as listed in the footnote) and those that were not.9  

Figure 6 documents that general degree completions (those not related to CNC) grew steadily, 

particularly from 1985 to 2010, reaching 4 million annual degree completions by the end of the 

series. By contrast, CNC-related degree programs show a more punctuated pattern, with very rapid 

growth between 1970 and 1980, a levelling off with stable completion rates between 1980 and 

2010, and then a second burst of strong growth between 2010 and 2020. The first period of growth 

in CNC-related degree completion corresponds to the diffusion of CNC machine tools, and the 

second period of growth corresponds to the spread of industrial robots. Appendix Figure 7 report 

time series in degree completion by degree type (certificates, associate degrees and bachelor’s 

degrees). 

 
9  Programs coded as CNC-related: programs coded as CNC programs: Automation Engineer 
Technology/Technician; Computer Numerically Controlled (CNC) Machinist Technology/CNC 
Machinist; Electromechanical Engineering; Electromechanical Tech./Technician; Industrial/ 
Manufacturing Engineering; Industrial/Manufacturing Tech./Technician; Machinist/Machine 
Technologist/Assistant; Mechatronics, Robotics, and Automation Engineering; Robotics 
Tech./Technician. 
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Alongside the expansion of CNC-related educational opportunities, we find that some existing 

workers in metal manufacturing industries re-enrolled in two- or four-year college degrees as CNC 

technology arrived in their industry. The CPS October supplement includes information about 

current educational enrollment and about current/last industry of employment. We restrict our 

sample to prime-age men who do not already hold a bachelor’s degree and whose current or most 

recent employment (within the past five years) was in a metal manufacturing industry. This data 

thus includes both current employees in a metal manufacturing industry and workers who are 

currently unemployed or out of the labor force but whose last employer was in the metal 

manufacturing industry. The sample is for 1976 through 2009. The average enrollment in higher 

education in this sample is close to 5%. 

Table 7 shows that workers are more likely to re-enroll in higher education as CNC technology 

diffused through their industry. A 10-percentage point increase in CNC exposure is associated with 

a 2.4 percentage point increase in total enrollment (column 1), which is derived primarily from 

increases in full-time enrollment in four-year degree programs (columns 2-5).  

We conclude that less-educated workers take active steps to try to protect themselves against job 

loss associated with CNC-based automation. However, the pace of returning to school is not high 

enough to compensate for the loss of employment for less-educated workers. For example, a 10-

percentage point increase in CNC exposure is associated with a 13% decline in the employment 

of men with a high school degree. So, if an industry employed 100 high school graduates, 13 would 

no longer be employed by only 2 would return to school. 

 

Firm adjustments to CNC technology 

Firms may also take active steps to adjust to the arrival of new automation technology. If firms 

want to have the flexibility to hire and fire workers without negotiating with unions, they could 

relocate their economic activity to the US South, which has a long history of “right-to-work” 

legislation that complicates union organizing (Kim, 2021). Furthermore, recent work on the 

adoption of industrial robots have found a robust pattern whereby larger firms are more likely to 

invest in new automation technology (Humlum, 2019; Acemoglu, et al. 2020; Koch, et al. 2021). 
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Thus, we might expect that industries exposed to CNC would be increasingly made up by larger 

firms, as smaller firms are rendered uncompetitive. 

We test both of these hypotheses in Table 8 and do not find evidence in support of either. 

According to CPS data, workers in industries exposed to CNC technology are no more likely than 

other workers to live in the US South (column 1). We then turn to the County Business Patterns 

data, which contains aggregate counts of establishments by industry and employment size (in bins). 

We report the shares of establishments in various size bins from under 20 to over 500 (columns 2-

6). Yet, we find no associations between exposure to CNC technology and firm size. 

 

VII. Conclusions 

Compared to the past, the modern factory floor is filled with machines and empty of people. In a 

modern factory, observers would find computerized machine tools producing complex parts based 

on instructions encoded in computer programs, conveyors moving parts from station to station, 

and robots assembling the parts into finished products. Jobs in the factory increasingly require a 

sophisticated understanding of the programming of machines and often a college degree. 

This paper studies one important – and to date overlooked – step in the long evolutionary process 

of factory automation: the advent and diffusion of automated machine tools. Automation began 

with the development of interchangeable parts in the late 19th century, which eliminated the need 

for skilled ‘fitters,’ and continued with the assembly line of the 1910s and 1920s, which 

economized on the use of porters to move parts around a factory. Electric power enabled more 

efficient organization on the factory floor and is associated with rising labor productivity and 

employment, primarily of lower-skilled operatives (Gray, 2013; Fiszbein, et al. 2020). Automated 

machine tools began to diffuse widely in the 1970s. At mid-century, machine tools required a semi-

skilled machinist to perform operations to specification by hand. New CNC tools replaced these 

routine operations with detailed computer programs overseen by skilled workers.  

We find that metal manufacturing industries that were more exposed to CNC tools experienced 

rising labor productivity and employment gains, with new employment driven by college 

graduates. Workers in exposed industries also responded to this technology shock by returning to 

school, perhaps to qualify for such higher-skilled work. Our measure of exposure to CNC tools is 
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based on initial differences in tool use across industries interacted with variation in the timing and 

extent of the shift to CNC technology across tools over time. 

In the century-long process of factory automation, the association of industrial robots with 

employment losses stands out as an exception (Acemoglu and Restrepo, 2018, 2020). For the first 

time, the displacement effects of automation, as some tasks shift from workers to machines, appear 

to be stronger than the productivity effects, which can increase labor demand for all tasks, and the 

reinstatement effects of new, often high-skilled, labor-intensive tasks. 

In countries or settings with stronger worker protections, the spread of industrial robots is not 

associated with falling employment, and can even lead employment to rise (Adachi, Kawaguchi 

and Saito, 2020; Dauth, et al., 2021). Similarly, we document fewer employment losses for low-

skilled workers and stronger overall employment growth in the union sector following the spread 

of CNC technology in the US.  

At least since the initial development of automated machine tools, scholars have speculated that 

worker protections would constrain the adoption of productivity-enhancing automation 

(Killingsworth 1963). Future work could explore how firms in settings with stronger worker 

protections respond to automation shocks. For example, are unionized firms in the United States 

slower to adopt automation technologies, or do they adopt technology while offering job protection 

to their existing workforce, thus sharing more of the gains from new technology with workers? Do 

firms react to new technology by shifting production from union to non-union establishments? A 

firm-level analysis of the diffusion of automation technologies could shed light on these questions 

and help guide the adjustment process in the future.  
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Figure 1: Relative Value Share of Installed Tools by Seven Metal Manufacturing Industries in 
1958 

 

Notes: Cells in the figure show the relative value share of for each type of machine tool by industry. 
Orange indicates that an industry is more intensive in that tool type than the average industry, 
while purple indicates it is less intensive than the average. To compute the relative value share, we 
first compute the value share of installed tool types for each of the seven metal manufacturing 
industries. We then subtract the mean across industries for each tool type. Data on tool value come 
from the 1958 American Machinist Inventory of Metalworking Equipment.  
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Figure 2: CNC Share by Machine Tool Type 

Panel A: Japan 
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Panel B: Germany

 

Notes: This figure presents the annual CNC shares of exports by machine tool types for both 
Japan and Germany. See Appendix Figure 1 for Italy. The data come from volumes of the 
Economic Handbook of the Machine Tool Industry as described in section III. 
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Figure 3: Cumulative CNC Share by Metal Manufacturing Industries 

 

Notes: Cumulative CNC shares for the seven metal manufacturing are computed from the initial 
tool distribution by industry and the CNC share of exports by tool as described in section III. 
Dotted lines indicate the year in which the cumulative share passed 30%. Data underlying the 
figure come from the 1958 American Machinist Inventory of Metalworking Equipment and 
volumes of the Economic Handbook of the Machine Tool Industry.  
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Figure 4: Capital Expenditures by CNC Shock Intensity 

 

Notes: The figure shows the average annual capital expenditures in metal manufacturing. Metal 
industries are partitioned into groups according to the intensity of the CNC shock they experience. 
Low shock industries are motor vehicles and fabricated metals; Medium shock industries are 
electronics, farm equipment, and general industrial equipment. High shock industries are aircraft 
and precision mechanisms. The figure is constructed using the NBER-CES Manufacturing Industry 
database. The shock was most intense from 1974 to 1997, as shown by the gray box. 
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Figure 5: High-School Share of Employment by CNC Shock Intensity

 

Notes: The figure shows the average share of workers employed in metal manufacturing who have 
a high school degree. Metal industries are partitioned into groups according to the intensity of the 
CNC shock they experience. Low shock industries are motor vehicles and fabricated metals; 
Medium shock industries are electronics, farm equipment, and general industrial equipment. High 
shock industries are aircraft and precision mechanisms. The data comes from the CPS Annual 
Social and Economic Supplement. The CNC shock was most intense from 1974 to 1997, as shown 
by the gray box. 
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Figure 6: CNC-Related Degree and Program Completions 

 

Notes: The figure shows the number of completed degrees and program in US higher educational 
institutions. Degrees and programs are categorized by whether their subject matter is related to 
CNC. Data come from the HEGIS and IPEDS databases as described in section VI. The gray box 
shows the period 1974-1997 during which the CNC shock was most intense. 

 



Table 1: The effect of CNC exposure on capital expenditure, value added, and labor share

log(Capital Exp.) log(Value Added) Labor Share

(1) (2) (3)
CNC Exposure 1.3526* 1.0920*** -0.1702**

(0.7086) (0.2727) (0.0745)
Industry FE X X X
Year FE X X X
With emp. controls X X
Dep. var mean 7.8482 10.7077 0.4098
N 294 294 294

Note: Outcome variables are log of annual capital expenditure, log of value added, and labor share (payroll per value
added) in each metal manufacturing industry. Columns (1) and (2) include log of production employment and log of
non-production employment (production employment subtracted from the total employment) as control variables. The
outcome variables are constructed from NBER-CES Manufacturing Industry database (1968-2009). All specifications
include industry and year fixed effects. Standard errors are robust. *** = significant at 1%, ** = significant at 5%, * =
significant at 10%
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Table 2: The effect of CNC exposure on employment

Data source: NBER-CES CPS ASEC

log(Prod. Emp) log(Total Emp) log(Less-than-HS) log(HS Grad) log(Some-Coll) log(4+ Yrs Coll)

(1) (2) (3) (4) (5) (6)

CNC Exposure -1.0823*** 1.2557** -1.7875*** -1.2638** -0.6245 2.2612**
(0.3740) (0.5006) (0.6863) (0.5574) (0.6172) (0.8736)

Industry FE X X X X X X
Year FE X X X X X X
Dep. var mean 6.1471 6.1051 4.1017 5.1356 4.5220 4.4236
N 294 294 294 294 294 294

Note: Outcome variables are log of production workers computed from NBER-CES Manufacturing Industry database
(1968-2009) and log of employment by education group in each metal manufacturing industry x year computed from
the CPS ASEC sample (1968-2009). We restrict our CPS ASEC sample to prime-age (18-64) men who reported to be
employed. All specifications include industry and year fixed effects. Standard errors are robust.
*** = significant at 1%, ** = significant at 5%, * = significant at 10%
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Table 3: The effect of CNC exposure on average annual earnings by education group

Less than HS HS Grad Some Coll 4+ Yrs Coll

(1) (2) (3) (4)

CNC Exposure -0.9433** -0.1122 0.1058 0.2503
(0.4229) (0.1759) (0.2611) (0.2639)

Industry FE X X X X
Year FE X X X X
Dep. var mean 10.5214 10.7594 10.9182 11.3341
N 294 294 294 294

Note: Outcome variables are average annual earnings by education group in each metal manufacturing industry and
year, computed from the CPS ASEC sample (1968-2009). We restrict our sample to prime-age (18-64) men who
reported to be employed. Each reported annual wage and salary income is converted to a dollar measure in 2012. The
average annual earnings are computed by taking the average of all workers’ annual earnings in each industry and year
by skill group. All specifications include industry and year fixed effects. Standard errors are robust.
*** = significant at 1%, ** = significant at 5%, * = significant at 10%
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Table 4: The effect of CNC exposure on average task composition

Manual Routine Abstract

(1) (2) (3)

CNC Exposure 0.9875*** -0.7889* 1.6481***
(0.1858) (0.4530) (0.5466)

Industry FE X X X
Year FE X X X
Dep. var mean 1.1030 5.3587 3.4109
N 294 294 294

Note: Outcome variables are average manual, routine, and abstract task scores in each metal manufacturing industry
x year, computed from the CPS ASEC sample (1968-2009). We restrict our sample to prime-age (18-64) men who
reported to be employed. Each worker in the sample with occupation code is mapped to a set of manual, routine,
and abstract task scores following Autor, Levy, and Murnane (2003). We use task score crosswalks using the 1990
occupation codes (occ1990dd). Then, the average of task scores are computed by taking the average of all workers’
task scores in each metal manufacturing industry and year. All specifications include industry and year fixed effects.
Standard errors are robust.
*** = significant at 1%, ** = significant at 5%, * = significant at 10%
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Table 5: Robustness analysis: The effect of CNC exposure on level of employment by education group

Data source: NBER-CES CPS ASEC

log(Prod. Emp) log(Total Emp) log(Less-than-HS) log(HS Grad) log(Some-Coll) log(4+ Yrs Coll)
(1) (2) (3) (4) (5) (6)

Panel 1: OLS
CNC Exposure -1.0823*** 1.2557** -1.7875*** -1.2638** -0.6245 2.2612**

(0.3740) (0.5006) (0.6863) (0.5574) (0.6172) (0.8736)
Dep. var mean 6.1471 6.1051 4.1017 5.1356 4.5220 4.4236

Panel 2: Weighted by annual (total) industry employment
CNC Exposure -1.1112*** 1.2438** -1.4369** -1.4731*** -0.6618 2.3455***

(0.3664) (0.4849) (0.5650) (0.5348) (0.5824) (0.8758)
Dep. var mean 6.1471 6.1051 4.1157 5.1356 4.5220 4.4236

Panel 3: Weighted by initial industry size in 1968
CNC Exposure -1.0940*** 1.1782** -1.7582*** -1.4162** -0.6822 2.0926**

(0.3672) (0.4832) (0.6511) (0.5457) (0.5961) (0.8865)
Dep. var mean 6.1471 6.1051 4.1017 5.1356 4.5220 4.4236

Panel 4: Demographic controls included
CNC Exposure -1.0289*** 0.8880* -1.9204*** -1.0301* -0.3483 2.1073**

(0.3304) (0.4884) (0.6532) (0.5325) (0.6345) (0.8725)
Dep. var mean 6.1471 6.1051 4.1017 5.1356 4.5220 4.4236

Panel 5: Import penentration control included
CNC Exposure -1.2679*** 1.4036** -2.3832** -1.0125 -0.2704 3.3987***

(0.4320) (0.6382) (0.9699) (0.6459) (0.7613) (0.9912)
Dep. var mean 6.1629 6.0793 4.0636 5.1235 4.5232 4.4191

Panel 6: Non-metal manufacturing included as a control group
CNC Exposure -0.1239 -0.0420 -1.4948*** -0.8879*** -0.2523** 0.3354**

(0.0832) (0.1245) (0.1446) (0.1220) (0.1265) (0.1477)
Dep. var mean 6.4939 6.3735 4.4367 5.4133 4.7657 4.6759

Note: Outcome variables are log of production workers computed from NBER-CES Manufacturing Industry database (1968-2009) and log of employment by
education group in each metal manufacturing industry x year computed from the CPS ASEC sample (1968-2009). We restrict our CPS ASEC sample to prime-age
(18-64) men who reported to be employed. All specifications include industry and year fixed effects. Panel 1 is identical to table 2. Panels 2 to 5 are versions of
table 2 analysis with different weighting schemes and control variables. Panel 2 is a version of table 2 analysis where each industry-year cell is weighted by the
annual industry employment. Panel 3 weights each industry-year cell by the initial industry size in 1968. Panel 4 includes annual demographic characteristics of
each industry workforce, share of white workers and share of young workers of age 18 to 35, as control variables. Panel 5 includes import penetration measure as a
control variable. The import penetration definition is drawn from Campbell and Lusher (2019), and we construct the measure using the US import data from Schott
(2008). Panel 6 includes a non-metal manufacturing group as a control group. N=294, except for panel 5 with N=238 and panel 6 with N=336. Standard errors are
robust.
*** = significant at 1%, ** = significant at 5%, * = significant at 10%
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Table 6: The effect of CNC exposure on the size of workforce by education and union status

log(Total Emp) log(Less-than-HS) log(HS Grad) log(Some-Coll) log(4+ Yrs Coll)

(1) (2) (3) (4) (5)

CNC Exposure -1.2664** -3.8066*** -3.4201*** -2.5846*** 0.2237
(0.6061) (0.8016) (0.7148) (0.8486) (0.7817)

CNC Exposure x Union 1.6724 2.6652* 1.5757 2.6258 1.9854
(1.0285) (1.4254) (1.1497) (1.5961) (2.2363)

Industry FE X X X X X
Union FE X X X X X
Year FE X X X X X
Union x industry FE X X X X X
Union x year FE X X X X X
Dep. var mean 5.7573 3.6712 4.8875 4.2342 3.7258
N 490 482 490 490 475

Note: Outcome variables are log of employment by education group in each metal manufacturing industry x year
computed from the CPS May Supplement (1973-1983) and CPS Outgoing Rotation Groups (1984-2009) sample. We
restrict our sample to prime-age (18-64) men who reported to be employed. The table is analogous to table 2, but it
splits the sample in each industry and year (and education group) into a sample with union membership and another
without union membership. The log of employment is then regressed to the CNC exposure measure and the exposure
measure interacted with an indicator for union membership. All specifications include industry and year fixed effects.
Standard errors are robust. *** = significant at 1%, ** = significant at 5%, * = significant at 10%
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Table 7: The effect of CNC exposure on the two- and four-year college enrollment

All enrollment 2-yr, full-time 2-yr, part-time 4-yr, full-time 4-yr, part-time

(1) (2) (3) (4) (5)

CNC Exposure 0.2346** 0.0455 0.0555 0.1110*** -0.0459
(0.0904) (0.0292) (0.0434) (0.0403) (0.0531)

Industry FE X X X X X
Year FE X X X X X
Dep. var mean 0.0531 0.0048 0.0163 0.0120 0.0165
N 238 238 238 238 238

Note: Outcome variables are the annual share of two-year or four-year college enrollment among each metal man-
ufacturing industry workforce constructed from the CPS October Supplement sample (1976-2009). We restrict our
sample to prime-age men who do not hold bachelor’s degree and whose current or last employment were in metal
manufacturing industry. All specifications include industry and year fixed effects. Standard errors are robust. *** =
significant at 1%, ** = significant at 5%, * = significant at 10%
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Table 8: The effect of CNC exposure on firm location and size

Data source: CPS ASEC CBP

Share South Under 20 Under 50 Over 100 Over 250 Over 500

(1) (2) (3) (4) (5) (6)

CNC Exposure 0.1060 0.0319 0.0120 0.0409 0.0145 -0.0070
(0.0908) (0.0783) (0.0672) (0.0523) (0.0369) (0.0286)

Industry FE X X X X X X
Year FE X X X X X X
Dep. var mean 0.2037 0.5978 0.7663 0.1445 0.0669 0.0333
N 294 245 245 245 245 245

Note: Outcome variables are annual share of workforce located in the Southern states by each metal manufacturing
industry computed from the CPS ASEC samples (1968-2009) on column 1 and annual shares of firms in each firm
size bin from the County Business Patterns (1968-2009) on columns 2-6. All specifications include industry and year
fixed effects. Standard errors are robust. *** = significant at 1%, ** = significant at 5%, * = significant at 10%
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Appendix Figure 1: CNC Share by Machine Tool Type for Italy 

 

Notes: This figure presents the annual CNC shares of exports by tool type for Italy. See Figure 1 
in the paper for Japan and Germany. The data come from volumes of the Economic Handbook of 
the Machine Tool Industry as described in section III. 
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Appendix Figure 2: CNC-Related Patent Counts by Tool and Country 

 

Notes: We began with a list of all US utility patents created for Kogan et al (2017) to scrape the 
digitized text from Google Patent. It is common for innovations created outside the United States 
to be patented in the US. Data from Lai et al (2011) provides the country of the grantee for each 
patent. We link Cooperative Patent Classification codes to the US patents. The patent subclass 
G05B contains classifications related to CNC. In particular, the subgroup G05B 19/18 covers 
“numerical control [NC], i.e., automatically operating machines, in particular machine tools..." 
We searched the patent text in our dataset to identify NC-related patents that are associated with 
five tool types: lathes, milling machines, drilling machines, boring machines, and grinding 
machines. We used the functions of the machines as the search terms. Our final figure examines 
patenting by Germany and Japan between 1975 and 1985. For those countries and period, there 
were 2,467 patents in G05B. The five tool types were mentioned in 52% of the patents.  
  



 

 47 

Appendix Figure 3: Education Group Shares of Employment by CNC Shock Intensity 

 

Notes: Industries partitioned into groups according to the intensity of the CNC shock they 
experience. Low shock industries are motor vehicles and fabricated metals; Medium shock 
industries are electronics, farm equipment, and general industrial equipment. High shock industries 
are aircraft and precision mechanisms. The shock was most intense from 1974 to 1997, as shown 
by the gray box. 
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Appendix Figure 4:  Average Task Scores of Occupations by Seven Metal Manufacturing Industries 

 

Notes: Task score for occupation are from Autor, Levy, and Murnane (2003). Workers in metal 
manufacturing in the CPS Annual Social and Economic Supplement are assigned the task scores 
corresponding to their occupations. We then compute averages for each of the seven metal manufacturing 
industries by year.  
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Appendix Figure 5:  Import Penetration by Seven Metal Manufacturing Industries 

 

Notes: Import penetration computed using trade data from Schott (2008) and the definitions found in 
Campbell and Lusher (2019). Import penetration is the share of imports in US domestic sales in each 
industry.  
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Appendix Figure 6: Union Share by Seven Metal Manufacturing Industries 

 

Notes: Average share of workers in each of the seven metal manufacturing industries belonging to a 
union. The share is computed from the CPS May Supplement (1973-1983) and CPS Outgoing Rotation 
Groups (1984-2009) sample. 
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Appendix Figure 7: CNC-Related Degree and Program Completions by Degree Type 

 

Panel A: Bachelor’s Degrees 

 

 

Panel B: Associate Degrees 

 

  



 

 52 

Panel C: Certificate Programs 

 

Notes: The figure shows the number of completed degrees and program in US higher educational 
institutions by type of degree or program. Degrees and programs are categorized by whether 
their subject matter is related to CNC. Data come from the HEGIS and IPEDS databases as 
described in section VI. The gray box shows the period 1974-1997 during which the CNC shock 
was most intense. 
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